Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders

Author:

Cholewiak DanielleORCID,DeAngelis Annamaria I.,Palka Debra,Corkeron Peter J.,Van Parijs Sofie M.

Abstract

The use of commercial echosounders for scientific and industrial purposes is steadily increasing. In addition to traditional navigational and fisheries uses, commercial sonars are used extensively for oceanographic research, benthic habitat mapping, geophysical exploration, and ecosystem studies. Little is known about the effects of these acoustic sources on marine animals, though several studies have already demonstrated behavioural responses of cetaceans to shipboard echosounders. Some species of cetaceans are known to be particularly sensitive to acoustic disturbance, including beaked whales. In 2011 and 2013, we conducted cetacean assessment surveys in the western North Atlantic in which a suite of Simrad EK60 echosounders was used to characterize the distribution of prey along survey tracklines. Echosounders were alternated daily between active and passive mode, to determine whether their use affected visual and acoustic detection rates of beaked whales. A total of 256 groups of beaked whales were sighted, and 118 definitive acoustic detections were recorded. Regression analyses using generalized linear models (GLM) found that sea state and region were primary factors in determining visual sighting rates, while echosounder state was the primary driver for acoustic detections, with significantly fewer detections (only 3%) occurring when echosounders were active. These results indicate that beaked whales both detect and change their behaviour in response to commercial echosounders. The mechanism of this response is unknown, but could indicate interruption of foraging activity or vessel avoidance, with potential implications for management and mitigation of anthropogenic impacts.

Funder

National Marine Fisheries Service, the Bureau of Ocean Energy Management, and the US Navy N45 Program

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3