Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis

Author:

Yu Shichen12,Zhu Xiaoshan1,Zhou Jin1ORCID,Cai Zhonghua1

Affiliation:

1. Shenzhen Public Service Platforms of Marine Microbial Resource Screening and Exploitation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, People's Republic of China

2. School of Life Science, Tsinghua University, Beijing 100084, People's Republic of China

Abstract

Biofilms play an important role in the antibiotic resistance of encased bacteria, and biofilm formation is regulated by quorum sensing (QS). Inhibiting the QS system may, therefore, degrade the integrity of a biofilm and expose the bacterial pathogens within it to the deleterious effects of molecules such as antibiotics. Moreover, the use of QS inhibitors (QSIs) may provide a novel approach for treating bacterial infections of aquacultures. In the present study, the bacterium Proteus mirabilis was identified as a potential producer of QSIs. Varying concentrations (0.1–1.1%) of filtrates prepared from the culture of P. mirabilis inhibited biofilm formation by the pathogens Pseudomonas aeruginosa , Vibrio harveyi and Staphylococcus aureus by as much as 58.9%, 41.5% and 41.9%, respectively. These filtrates as well as the crude aqueous extracts prepared from them increased the sensitivities of pathogens to the inhibitory effects of kanamycin. The filtrates also showed pathogenicity attenuation potential in P. aeruginosa by decreasing the production of virulence factors. Moreover, the filtrates did not influence the planktonic growth of these pathogens. The results indicate that P. mirabilis may act as a non-specific (or broad-spectrum) inhibitor of biofilm formation that will help control infectious diseases that adversely affect the aquaculture industry.

Funder

S&T Projects of Shenzhen Science and Technology Innovation Committee

National Natural Science Foundation of China

Guangdong Innovation and Development of Regional Marine Economy Demonstration Projects

Publisher

The Royal Society

Subject

Multidisciplinary

Reference39 articles.

1. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease

2. Arctic Actinomycetes as Potential Inhibitors of Vibrio cholerae Biofilm

3. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark;Aarestrup FM;APMIS. Suppl.,2000

4. Aquaculture: global status and trends

5. Department FF. 2004 The state of world fisheries and aquaculture . Rome Italy: Food and Agriculture Organization.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3