How effective is incidental learning of the shape of probability distributions?

Author:

Tran RandyORCID,Vul Edward,Pashler Harold

Abstract

The idea that people learn detailed probabilistic generative models of the environments they interact with is intuitively appealing, and has received support from recent studies of implicit knowledge acquired in daily life. The goal of this study was to see whether people efficiently induce a probability distribution based upon incidental exposure to an unknown generative process. Subjects played a ‘whack-a-mole’ game in which they attempted to click on objects appearing briefly, one at a time on the screen. Horizontal positions of the objects were generated from a bimodal distribution. After 180 plays of the game, subjects were unexpectedly asked to generate another 180 target positions of their own from the same distribution. Their responses did not even show a bimodal distribution, much less an accurate one (Experiment 1). The same was true for a pre-announced test (Experiment 2). On the other hand, a more extreme bimodality with zero density in a middle region did produce some distributional learning (Experiment 3), perhaps reflecting conscious hypothesis testing. We discuss the challenge this poses to the idea of efficient accurate distributional learning.

Funder

Directorate for Social, Behavioral and Economic Sciences

James S. McDonnell Foundation

Office of Naval Research

Division of Social and Economic Sciences

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3