Fine-scale movement responses of free-ranging harbour porpoises to capture, tagging and short-term noise pulses from a single airgun

Author:

van Beest Floris M.ORCID,Teilmann Jonas,Hermannsen Line,Galatius Anders,Mikkelsen LonnieORCID,Sveegaard Signe,Balle Jeppe Dalgaard,Dietz Rune,Nabe-Nielsen Jacob

Abstract

Knowledge about the impact of anthropogenic disturbances on the behavioural responses of cetaceans is constrained by lack of data on fine-scale movements of individuals. We equipped five free-ranging harbour porpoises ( Phocoena phocoena ) with high-resolution location and dive loggers and exposed them to a single 10 inch 3 underwater airgun producing high-intensity noise pulses (2–3 s intervals) for 1 min. All five porpoises responded to capture and tagging with longer, faster and more directed movements as well as with shorter, shallower, less wiggly dives immediately after release, with natural behaviour resumed in less than or equal to 24 h. When we exposed porpoises to airgun pulses at ranges of 420–690 m with noise level estimates of 135–147 dB re 1 µPa 2 s (sound exposure level), one individual displayed rapid and directed movements away from the exposure site and two individuals used shorter and shallower dives compared to natural behaviour immediately after exposure. Noise-induced movement typically lasted for less than or equal to 8 h with an additional 24 h recovery period until natural behaviour was resumed. The remaining individuals did not show any quantifiable responses to the noise exposure. Changes in natural behaviour following anthropogenic disturbances may reduce feeding opportunities, and evaluating potential population-level consequences should be a priority research area.

Funder

offshore wind developers: Vattenfall, Forewind, ENECO Luchterduinen, DONG Energy and ScottishPower Renewables

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3