Explaining large mitochondrial sequence differences within a population sample

Author:

Morgan-Richards Mary1ORCID,Bulgarella Mariana1,Sivyer Louisa1,Dowle Edwina J.2,Hale Marie3,McKean Natasha E.1,Trewick Steven A.1

Affiliation:

1. Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand

2. Department of Integrative Biology, University of Colorado, 1151 Arapahoe, SI 2071, Denver, CO 80204, USA

3. School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

Abstract

Mitochondrial DNA sequence is frequently used to infer species' boundaries, as divergence is relatively rapid when populations are reproductively isolated. However, the shared history of a non-recombining gene naturally leads to correlation of pairwise differences, resulting in mtDNA clusters that might be mistaken for evidence of multiple species. There are four distinct processes that can explain high levels of mtDNA sequence difference within a single sample. Here, we examine one case in detail as an exemplar to distinguish among competing hypotheses. Within our sample of tree wētā ( Hemideina crassidens ; Orthoptera), we found multiple mtDNA haplotypes for a protein-coding region ( cytb / ND1 ) that differed by a maximum of 7.9%. From sequencing the whole mitochondrial genome of two representative individuals, we found evidence of constraining selection. Heterozygotes were as common as expected under random mating at five nuclear loci. Morphological traits and nuclear markers did not resolve the mtDNA groupings of individuals. We concluded that the large differences found among our sample of mtDNA sequences were simply owing to a large population size over an extended period of time allowing an equilibrium between mutation and drift to retain a great deal of genetic diversity within a single species.

Funder

Massey University

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3