Photo-ionization and the electrical breakdown of gases

Author:

Abstract

A quantitative theoretical investigation is made of the role of photo-ionization of the gas in the development of ionization currents in gases under uniform fields. Using published values of the relevant absorption coefficients and atomic cross-sections, the theory is applied to the case of air, and the results then compared with those previously obtained experimentally, It is shown that photo-ionization can lead to electrical breakdown only under certain restricted conditions, which relate the ionization coefficients and atomic cross-sections for photon-molecule interaction; these restrictions are such that there must be considerable penetration of the gas by ionizing photons, and in many cases a high proportion of all the photons thus reach the cathode. It is also found that the theoretical curve for the growth of current, obtained on the assumption that photo-ionization is the only operative secondary ionization process, has the same general form as the growth curve based on the other secondary processes, e. g. secondary emission from the cathode; there are, however, significant differences in detail. This quantitative investigation supports the view that photo-ionization does not play a predominant role as a secondary ionization process leading to the electrical breakdown of air at values of p x d ~ 760 cm mm Hg in uniform fields.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference23 articles.

1. C o m p ton T . & V a n V oorhis C. C. 1926 P hys. Rev. 2 7 724.

2. P hys;Rev.,1935

3. Proc. Roy;Jo;Soc. A,1952

4. Proc;Roy Soc. A,1936

5. G reiner A. 1933 Z . P hys. 81 543.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3