Abstract
In the last few years Copson, Schwinger and others have obtained exact solutions of a number of diffraction problems by expressing these problems in terms of an integral equation which can be solved by the method of Wiener and Hopf. A simpler approach is given, based on a representation of the scattered field as an angular spectrum of plane waves, such a representation leading directly to a pair of ‘dual’ integral equations, which replaces the single integral equation of Schwinger’s method. The unknown function in each of these dual integral equations is that defining the angular spectrum, and when this function is known the scattered field is presented in the form of a definite integral. As far as the ‘radiation’ field is concerned, this integral is of the type which may be approximately evaluated by the method of steepest descents, though it is necessary to generalize the usual procedure in certain circumstances. The method is appropriate to two-dimensional problems in which a plane wave (of arbitrary polarization) is incident on plane, perfectly conducting structures, and for certain configurations the dual integral equations can be solved by the application of Cauchy’s residue theorem. The technique was originally developed in connexion with the theory of radio propagation over a non-homogeneous earth, but this aspect is not discussed. The three problems considered are those for which the diffracting plates, situated in free space, are, respectively, a half-plane, two parallel half-planes and an infinite set of parallel half-planes; the second of these is illustrated by a numerical example. Several points of general interest in diffraction theory are discussed, including the question of the nature of the singularity at a sharp edge, and it is shown that the solution for an arbitrary (three-dimensional) incident field can be derived from the corresponding solution for a two-dimensional incident plane wave.
Reference35 articles.
1. LXI. On Sommerfeld's “radiation condition.”
2. Theory of Diffraction by Small Holes
3. Booker H. G. 1946 J. InstnElect. Engrs 93 p t. m A 620.
4. Proc;Booker H. G.;Instn Elect. Engrs., 97, p t h,1950
5. Physica, 12, 467. Bouwkamp, C. J . 1947;Bouwkamp C. J .;Math. Rev.,1946
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献