Analysis of the swimming of long and narrow animals

Author:

Abstract

The swimming of long animals like snakes, eels and marine worms is idealized by considering the equilibrium of a flexible cylinder immersed in water when waves of bending of constant amplitude travel down it at constant speed. The force of each element of the cylinder is assumed to be the same as that which would act on a corresponding element of a long straight cylinder moving at the same speed and inclination to the direction of motion. Relevant aerodynamic data for smooth cylinders are first generalized to make them applicable over a wide range of speed and cylinder diameter. The formulae so obtained are applied to the idealized animal and a connexion established between B / λ , V / U and R 1 . Here B and λ are the amplitude and wave-length, V the velocity attained when the wave is propagated with velocity U , R 1 is the Reynolds number Udρ / μ , where d is the diameter of the cylinder, ρ and μ are the density and viscosity of water. The results of calculation are compared with James Gray’s photographs of a swimming snake and a leech. The amplitude of the waves which produce the greatest forward speed for a given output of energy is calculated and found, in the case of the snake, to be very close to that revealed by photographs. Similar calculations using force formulae applicable to rough cylinders yield results which differ from those for smooth ones in that when the roughness is sufficiently great and has a certain directional character propulsion can be achieved by a wave of bending which is propagated forward instead of backward. Gray’s photographs of a marine worm show that this remarkable method of propulsion does in fact occur in the animal world.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference15 articles.

1. Z . f . M ath;Phys.,1908

2. B o u ssin esq J . 190s J .M ath. Pures appl.285.

3. G old stein S. 1938 M odem developments in flu id dynamics p. 425. O x fo rd : C larendon P ress.

4. Proc. Roy;Soc. B,1939

5. 6 J . E xp;Biol.,1939

Cited by 432 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3