Simple solutions of the partial differential equation for diffusion (or heat conduction)

Author:

Abstract

It is shown that simple approximate solutions of the partial differential equation for diffusion (or heat conduction) in finite solids of various shapes and under various conditions can be derived from the simple solutions which are rigorously applicable to linear diffusion in a semi-infinite slab. The case in which the initial volume concentration is constant and the surface concentration is zero is considered in detail. For linear diffusion in a finite slab, the solutions show that each end of the slab can be regarded as functioning as the end of a semi-infinite slab for a time during which the central and the average fractional concentrations fall to 0·6 and 0·3, respectively. For a small region near the centre, this is true for a much longer time range, i. e. till the central and the average fractional concentrations fall to 0·2 and 0·1, respectively. Hence, very simple expressions for the concentration distribution or for average concentration in solids of various shapes are obtained without using any special mathematical method. The condition under which a solid of any shape or dimensions behaves as a linear semi-infinite slab is formulated. Some empirical and experimental findings of other workers are examined and found to be consistent with the theoretical conclusions. To illustrate the general applicability of the method, linear diffusion in a finite slab when the material is generated inside it at a constant rate or when the surface concentration increases linearly with time is briefly discussed and explicit results given. All expressions are obtained in terms of a dimensionless parameter, and it is shown that; the concentration distribution in solids of any material and of various shapes can be derived from one single universal curve. Tables and graphs are given showing the relation between the numerical values calculated from the present simple solutions and those obtained by other much more laborious methods.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference12 articles.

1. Trans. R oy;Soc. Edinb.,1899

2. Carslaw H . S. & Ja e g e r J . C. 1947 Conduction of heat in solids. O xford: C larendon Pr<

3. C rank J . 1956 The mathematics of diffusion. O xford: C larendon Press.

4. Proc. R oy;Ew J .;Soc. A,1958

5. M em . M anchr. L it. P h il;Soc.,1935

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3