The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices

Author:

Abstract

Many-electron wave functions are usually constructed from antisymmetrized products of one-electron orbitals (determinants) and energy calculations are based on the matrix element expressions due to Slater (1931). In this paper, the orbitals in such a product are replaced by ‘group functions’, each describing any number of electrons, and the necessary generalization of Slater’s results is carried out. It is first necessary to develop the density matrix theory of N -particle systems and to show that for systems described by ‘generalized product functions’ the density matrices of the whole system may be expressed in terms of those of the component electron groups. The matrix elements of the Hamiltonian between generalized product functions are then given by expressions which resemble those of Slater, the ‘coulomb’ and ‘exchange’ integrals being replaced by integrals containing the one-electron density matrices of the various groups. By setting up an ‘effective’ Hamiltonian for each electron group in the presence of the others, the discussion of a many-particle system in which groups or ‘shells’ can be distinguished (e. g. atomic K, L, M , ..., shells) can rigorously be reduced to a discussion of smaller subsystems. A single generalized product (cf. the single determinant of Hartree—Fock theory) provides a convenient first approximation; and the effect of admitting ‘excited’ products (cf. configuration interaction) can be estimated by a perturbation method. The energy expression may then be discussed in terms of the electon density and ‘pair’ functions. The energy is a sum of group energies supplemented by interaction terms which represent (i) electrostatic repulsions between charge clouds, (ii) the polarization of each group in the field of the others, and (iii) ‘dispersion’ effects of the type defined by London. All these terms can be calculated, for group functions of any kind, in terms of the density matrices of the separate groups. Applications to the theory of intermolecular forces and to π -electron systems are also discussed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference18 articles.

1. Proc. Roy;Bom M.;Soc. A,1947

2. Brillouin L. 1932 J. Phys.Radium (7) 3 373.

3. Condon E. TJ. & Shortley G. H. 1935 The theory of atomic spectra. Cambridge University Press.

4. Ferrar W. L. 1951 Finite matrices. Oxford University Press.

5. Notes on iterative processes

Cited by 437 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3