Constitution and mechanism of the selenium rectifier photocell

Author:

Abstract

This paper describes experiments to elucidate the exact physical and chemical structure of the selenium rectifier photocell, especially that of the thin surface film. A technique is described for sputtering films of cadmium oxide which, though transparent in the thickness required for a cell, have an electrical conductivity exceeding that of graphite. The thickness of the films can be closely controlled. With such films, on pure crystalline selenium, cells were produced with white-light sensitivities of over 700 µA per lumen, open-circuit voltages up to 0.5 V under high illumination, and maximum quantum efficiencies up to 70 %. The optical properties of the films are described, and the way in which the technique may be used to produce other non-metallic films is indicated. The cadmium oxide is found to have a negative Hall coefficient, and is therefore an N type semi-conductor. Further experiments with single films of gold, and double films of zinc oxide and gold, illustrate the behaviour of these, in intimate contact with selenium. The metal-selenium contact yields a poor photocell, the metal-zinc oxide-selenium contact one whose properties are critically dependent on the thickness of the intermediate oxide layer, and the N type cadmium oxide-selenium contact one for which the efficiency is high, and the thickness of cadmium oxide not critical. It is suggested therefore that in the practical photocell, the essential mechanism is a contact between two suitable semi-conductors of dissimilar types, any extra metal film when present serving simply to raise the lateral conductivity of the intermediate semi-conducting film when this is not high enough to eliminate undesirable effects of a high internal resistance in the finished cell.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference21 articles.

1. Soc.59 990.

2. A nn;Badeker K.;Phys. Lpz.,1907

3. A new selenium-sulphur rectifier photoelectric cell

4. Barnard G. P. 1939 Proc. Phys. Soc. 51 222 and a number of Russian papers.

5. phys;Baumbach H. H.;Ghent.,1933

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3