The slow oxidation of methane

Author:

Abstract

Mixtures of methane and oxygen behave in a reproducible manner at temperatures of 440 to 520°C and initial pressures of 100 to 350 mm when reacting in Pyrex vessels freshly cleaned with hydrofluoric acid. The apparent order of the reaction ranged from 2∙3 to 2∙6 and the overall activation energy from 29 to 41 kcal/mole. Analyses of the products formed have been made, together with measurements of pressure change. Formaldehyde is formed from the commencement of the reaction including the induction period, but its concentra­tion reaches a maximum near the stage where the pressure rise is a maximum, and then falls off. Hydrogen peroxide is also formed, less rapidly in the earliest stage, but its rate of formation overtakes that of formaldehyde and it reaches an even higher concentration. No other peroxides were detected, nor was methanol found. Hydrogen was present in the gaseous products. These observations are not in full accord with some of the conclusions derived from earlier investigations.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

1. Audibert E . 1949 Rev. Inst franp.Petrole 4 446.

2. Proc. Roy;Bone W. A.;Soc. A,1932

3. Proc. Roy;Bone W. A.;Soc. A,1936

4. Spectrophotometric Method for Determining Formaldehyde

5. Analysis of Organic Hydroperoxides in the Presence of Hydrogen Peroxide

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conjugated Reactions of Oxidation with Hydrogen Peroxide in the Gas Phase;Coherent Synchronized Oxidation Reactions by Hydrogen Peroxide;2007

2. References;International Geophysics;1988

3. On the mechanism of thermal oxidation of methane;International Journal of Chemical Kinetics;1985-08

4. Mechanism of the combustion of methane;Bulletin of the Academy of Sciences of the USSR Division of Chemical Science;1979-09

5. The formation of methanol during the gas-phase oxidation of methane;Combustion and Flame;1976-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3