Vorticity generated by sound

Author:

Abstract

A revision is given of the basic theory of second-order effects caused by acoustic disturbances in a fluid, especially the vorticity giving rise to the ultrasonic wind, which was first explained by Eckart. The ultrasonic wind is produced by the interaction of the radiative and the non-radiative components of the acoustic motion. The wind speed is for the most part proportional to the acoustic attenuation coefficient. Wind-speed measurements thus usually furnish no more information about the second coefficient of viscosity, or the bulk viscosity, than do other attenuation measurements. It appears reasonable to regard the Stokesian bulk viscosity coefficient as a parameter of intramolecular and intermolecular relaxation processes. It does not have a unique value for all frequencies. Provided other parameters such as the coefficients of shear viscosity and heat conduction, and the specific heats are known independently, this effective bulk viscosity can be evaluated from any type of attenuation measurement. Measurements over large enough frequency ranges can distinguish among the contributions of different relaxation processes to the effective bulk viscosity coefficient.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bulk viscosity of liquid noble gases;The Journal of Chemical Physics;2020-03-07

2. Analysis of internally generated sound in continuous materials: (I) inhomogeneous acoustic wave equations;Journal of Sound and Vibration;1965-01

3. Acoustic Streaming;Properties of Polymers and Nonlinear Acoustics;1965

4. Theories of Liquid Viscosity.;Chemical Reviews;1962-12-01

5. Schallerzeugung;Einführung in die Akustik;1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3