The study of energy transfer by kinetic spectroscopy I. The production of vibrationally excited oxygen

Author:

Abstract

The flash photolysis of chlorine dioxide or of nitrogen dioxide in a great excess of inert gasyields oxygen molecules in their electronic ground states with up to eight quanta of vibrational energy. By a study of the reaction kinetics of the two systems, it is concluded that these excited molecules have their origin in the reactions O + NO 2 = NO + O 2 and O + CIO 2 = CIO + O 2 respectively. Thus, for the first time we have available a very convenient method of studying the collisional transfer and degradation of vibrational energy from molecules in the higher vibrational levels of the ground state and some preliminary measurements of the efficiency of deactivation by various molecules are given. It is concluded that the energy is removed most readily either when there is near resonance of the vibrational levels with those of the oxygen, or by free radicals. Some of the reactions of the chlorine oxides present are also discussed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference4 articles.

1. Bondart M. & Dubois J. T. 1955

2. Bray W. 1906

3. J;Curry J.;Chem. Phys.,1934

4. Z.phys. Chem. 54 569.

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanistic Insights into Chloric Acid Production by Hydrolysis of Chlorine Trioxide at an Air–Water Interface;Journal of the American Chemical Society;2024-07-16

2. Chemical dynamics from the gas‐phase to surfaces;Natural Sciences;2021-05-19

3. Molecular Modulation Mass Spectrometry Kinetic Study of the ClO Free Radical;Bulletin des Sociétés Chimiques Belges;2010-09-02

4. The Production of Excited Species in Simple Chemical Reactions;Advances in Chemical Physics;2007-03-14

5. The Chemistry of Chlorine Dioxide;Progress in Inorganic Chemistry;2007-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3