Abstract
An account is given of an accurate method of measuring the thermal conductivity of metals between 0·2 and 4°K using carbon aquadag resistance thermometers. Experimental curves are shown for tin specimens of different crystal structure and of varying impurity contents in both superconducting and normal states, and they are analyzed on the basis of the two-fluid model of superconductivity. It appears that at low temperatures the conductivity is mainly due to the lattice, since the observed temperature variation for all specimens is consistent with a
T
3
law at sufficiently low temperatures. Good agreement is obtained between the effective mean free paths of the lattice waves and the values expected from the rod dimensions and crystal sizes. The electronic contribution to the thermal conduction in the superconducting state falls very rapidly below
T
c
, and, to a first approximation, the ratio of this contribution to that in the normal state is a function of temperature and not of impurity. The effects of magnetic fields on measurements of thermal conductivity are also briefly discussed and it is shown that the results may be complicated by frozen-in flux.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献