The thermal conductivity of tin at low temperatures

Author:

Abstract

An account is given of an accurate method of measuring the thermal conductivity of metals between 0·2 and 4°K using carbon aquadag resistance thermometers. Experimental curves are shown for tin specimens of different crystal structure and of varying impurity contents in both superconducting and normal states, and they are analyzed on the basis of the two-fluid model of superconductivity. It appears that at low temperatures the conductivity is mainly due to the lattice, since the observed temperature variation for all specimens is consistent with a T 3 law at sufficiently low temperatures. Good agreement is obtained between the effective mean free paths of the lattice waves and the values expected from the rod dimensions and crystal sizes. The electronic contribution to the thermal conduction in the superconducting state falls very rapidly below T c , and, to a first approximation, the ratio of this contribution to that in the normal state is a function of temperature and not of impurity. The effects of magnetic fields on measurements of thermal conductivity are also briefly discussed and it is shown that the results may be complicated by frozen-in flux.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Field Calorimetric Studies on Low-Dimensional and Frustrated Quantum Magnets;Journal of the Physical Society of Japan;2022-10-15

2. Carrier interactions and porosity initiated reversal of temperature dependence of thermal conduction in nanoscale tin films;Journal of Applied Physics;2014-01-14

3. Wärmeleitfähigkeit;Eigenschaften der Materie in Ihren Aggregatzuständen;2013

4. Bibliography;Thermophysical Properties Research Literature Retrieval Guide 1900–1980;1982

5. Mixed-state thermal conductivity of type II superconductors;Journal of Low Temperature Physics;1970-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3