The stability of viscous flow between rotating cylinders in the presence of a magnetic field

Author:

Abstract

In this paper the theory of the stability of viscous flow between two rotating coaxial cylinders which has been developed by Taylor, Jeffreys and Meksyn is extended to the case when the fluid considered is an electrical conductor and a magnetic field along the axis of the cylinders is present. A differential equation of order eight is derived which governs the situation in marginal stability; and a significant set of boundary conditions for the problem is formulated. The case when the two cylinders are rotating in the same direction and the difference ( d ) in their radii is small compared to their mean (R 0 ) is investigated in detail. A variational procedure for solving the underlying characteristic value problem and determining the critical Taylor numbers for the onset of instability is described. As in the case of thermal instability of a horizontal layer of fluid heated below, the effect of the magnetic field is to inhibit the onset of instability, the inhibiting effect being the greater, the greater the strength of the field and the value of the electrical conductivity. In both cases, the inhibiting effect of the magnetic field depends on the strength of the field ( H ), the density ( ρ ) and the coefficients of electrical conductivity ( σ ), kinematic viscosity ( v ) and magnetic permeability ( μ ) through the same non-dimensional combination Q2 H 2 d 2 σ/ pv ; however, the effect on rotational stability is more pronounced than on thermal instability. A table of the critical Taylor numbers for various values of Q is provided.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference12 articles.

1. Chandrasekhar S. 1952 Phil.

2. Goldstein S. 1937 Proc. Camb. Phil. Ma[7] 43 501.

3. 33 41.

4. Proc. Boy;Jeffreys H .;Soc. A,1928

5. Nature;Low A. R.;Land.,1925

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3