A macroscopic theory of interference and diffraction of light from finite sources, I. Fields with a narrow spectral range

Author:

Abstract

A macroscopic theory of interference and diffraction of light in stationary fields produced by finite sources which emit light within a finite spectral range is formulated. It is shown that a generalized Huygens principle may be obtained for such fields, which involves only observable quantities. The generalized Huygens principle expresses the intensity at a typical point of the field in terms of an integral taken twice independently over an arbitrary surface, the integral involving the intensity distribution over the surface and the values of a certain correlation factor, which is found to be the ‘degree of coherence’ previously introduced by Zemike. Next it is shown that under fairly general conditions, this correlation factor is essentially the normalized integral over the source of the Fourier (frequency) transform of the spectral intensity function of the source, and that it may be determined from simple interference experiments. Further, it is shown that in regions where geometrical optics is a valid approximation, the coherence factor itself then obeys a simple geometrical law of propagation. Several results on partially coherent fields, established previously by Van Cittert, Zernike, Hopkins and Rogers, follow as special cases from these theorems. The results have a bearing on many optical problems and can also be applied in in ­ vestigations concerned with other types of radiation.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

1. A m ulf A. D upuy O. & F lam an t F . 1953 Re(

2. Proc. P hys;Soc. B,1953

3. Berek M. 1926a Z .P hys. 36 675.

4. Berek M. 19266 Z . P hys. 36 824.

5. Berek M. 1926c Z . P hys. 37 287.

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3