The valence-bond theory of molecular structure II. Reformulation of the theory

Author:

Abstract

The construction of spin eigenfunctions and the evaluation of matrix elements between ,them are discussed generally in preparation for a development of the valence bond (VB) theory along the lines indicated in I. The customary approximation of considering explicitly only the electrons outside a ‘closed shell’ is shown to be defensible. The reformulation of the VB theory is now straightforward, but its final description of bonding is quite new. Atomic orbitals (AO’s) are replaced, whenever they appear, by orthogonalized atomic orbitals (AO’s); but when the assumptions of the conventional theory are rigorously validated in this way the ‘covalent’ structures (now ‘VB’ structures) are found, quite generally, to indicate only strong repulsion between the ‘bonded’ atoms, and formal descriptions of bonding and of bond orders, in terms of ‘spin-pairing’, become nonsensical. Bonding can be described only by admitting into the wave functions polar VB structures; a bond between two atoms demands the appearance (with considerable weight) of pairs of structures differing by a ‘charge hop’ between the atoms concerned. The conventional VB structures are found to be equivalent to certain groupings of VB structures (non-polar and polar) and do, indeed, predict bonds between spin-paired atoms and repulsion between the atoms of different pairs. It is then possible to make full use of chemical intuition, using a plausible combination of conventional structures as a starting approximation in the more rigorous theory. A numerical illustration is provided by a discussion of the Kekulé structures of benzene. Some important characteristics of energy calculations in the VB theory are pointed out. Quantities of intra - and inter -atomic origin are well separated, and the method is apparently well suited to development along either ab initio or empirical lines.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference10 articles.

1. Proc. Roy;Chirgw B .;Soc. A,1950

2. Proc. R oy;Craig D .;Soc. A,1950

3. E y rin g H . & K im b all G. E . 1933 J . Chem. Phys. 1 239; see also p. 626.

4. J;Chem. Phys.,1950

5. J;Chem. Phys.,1953

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3