Stationary flames of methyl nitrate and methyl nitrite

Author:

Abstract

Methyl nitrate (CH 3 ONO 2 ) is the most explosive of the nitrate esters, and previous studies have been confined mainly to the slow thermal decomposition, and to the vapour phase explosion at low pressures in closed vessels. A stationary decomposition flame has now been maintained and studied spectrographically. A t low pressures the zones of reaction are clearly separated. From the early stages of the flame strong formaldehyde bands are emitted. This decomposition flame has been successfully simulated in artificial mixtures of methyl nitrite with oxygen. The results obtained are in accord with the preliminary fission of the nitrate molecule in the pre-heat zone of the flame: CH 3 ONO 2 →CH 3 O + NO 2 . The combustion flame of m ethyl nitrate with oxygen, nitric oxide and nitrogen dioxide has also been examined at low pressures. At atmospheric pressure, m ethyl nitrite (CH 3 ONO) has been found to support a decomposition flame of very small burning velocity. However, the combustion of m ethyl nitrite with oxygen at atmospheric pressure is an extremely fast and vigorous flame. It has been observed in both pre-mixed and diffusion systems and information about the changes occurring in it have been obtained by absorption and emission spectroscopy. All the experimental results may be interpreted in terms of two general principles: the reluctance of nitric oxide to react except at high temperatures and pressures and the frequent occurrence in flames of extensive pyrolytic reactions before the main reaction zone is reached.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. Radical reactions of nitric oxide in flames

2. Adam s G. K . Stocks G. W . & W y a tt R . M. H . 1951 M inistry of Supply unpublished report.

3. A dam s G. K . & W isem an L. A. B utterw orths. 1954 Selected combustion problems p. 277. London:

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3