Abstract
Interactions of a non-holonomic type are fundamentally different from interactions which can be treated as part of the Hamiltonian of a system. They usually lead to constraints which do not commute with the Hamiltonian, and cause important alterations in the development of a state vector. This paper deals with the Heisenberg equations of motion by analogy with classical dynamics using the Poisson bracket formalism of a previous paper (Eden 1951). The Schrödinger equation is investigated in co-ordinate representation, and it is shown that the wave function will have a non-integrabie phase factor or quasi phase. The quasi phase leads to an indefiniteness in the wave function, but does not violate the fundamental laws of quantum mechanics nor lead to any ambiguity in the physical interpretation of the theory. The relation between the Schrödinger and the Heisenberg equations shows that the Schrödinger treatment is also consistent with the classical analogue. If there is a given initial probability that the non-holonomic system has co-ordinates
q
(0)
r
, then there will be the same probability that the wave function in the subsequent motion will be zero except in a certain region of co-ordinate space. This region is the part of co-ordinate space which is accessible in the classical theory from the point
q
(0)
r
.
Reference3 articles.
1. Dirac P. A. M. 1931 Proc. Roy. A 133 60.
2. Canad;Dirac P. A. M.;Math.,1950
3. Proc. Roy;Eden R. J.;Soc. A,1951
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献