Shock waves in a liquid containing gas bubbles

Author:

Abstract

Considerations of continuity, momentum and energy together with an equation of state are applied to the propagation of plane shock waves in a gas + liquid mixture. The shock-wave relations assume a particularly simple form when the temperature rise across a shock, which is shown to be small for a very wide range of conditions, is neglected. In particular, a simple relation emerges between the shock propagation speed and the pressure on the high-pressure side of the shock, the density of the liquid and the relative proportions, by mass and volume, of gas and liquid in the mixture. It is shown from entropy considerations that a rarefaction wave cannot propagate itself without change of form, and it is argued that a compression wave can be expected to steepen into a shock wave. Consideration of the collision between two normal shock waves, moving in opposite directions, suggests that the strengths of the two shocks are unaltered by the interaction between them. This implies, in particular, that, when a shock impinges normally on a plane wall, the pressure ratio across the reflected shock is equal to that across the incident shock. When the mass ratio of gas to liquid in the mixture is allowed to tend to infinity, the various shock-wave relations for a mixture, derived with the temperature rise across the shock neglected, assume the same limiting form as the corresponding relations for a perfect gas when the ratio of specific heats tends to unity. The theoretical discussion has been illustrated by experiments with a small gas + liquid mixture shock tube. Samples of the records, obtained when the passage of a shock changes the amount of light transmitted through the mixture to a photoelectric cell, illustrate the steepening of a compression wave and the flattening of a rarefaction wave. Measurements confirm the theoretical relation for the propagation speed of shock waves. Reasonably good experi­mental confirmation is also reported of the theoretical predictions for the pressure which arises following the normal impact of a shock wave on a plane wall.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference4 articles.

1. A ckeret J . 1930 Tech. Mech. T h erm o-D yn am B erl. vol. 1 pp. 1 53

2. Courant R. & Friedrichs K . O. 1948 Supersonic flow and shock waves. New Y ork and L o n d o n : Interscience Publishers.

3. H ow arth L. (editor) 1953 Modern developments in fluid dynam ics: high speed flow. Oxford: Clarendon Press.

4. Proc. Roy;Mallock A.;Soc. A,1910

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3