Vibrational relaxation in gases

Author:

Abstract

The velocity of ultrasonic waves has been measured in a number of gases at 25°C and for values of the ratio, ultrasonic frequency/pressure, ranging from 2 x 10 5 to 2 x 10 7 c s -1 atm -1 . Dispersion, corresponding to a single vibrational relaxation process was shown by acetylene, CD 3 Br and hexafluoro-ethane; and, to a double relaxation process, by ethane. Incipient dispersion was shown by propane, ethyl chloride, ethyl fluoride and dimethyl ether. No dispersion was shown by 1.1-difluoro-ethane, n -butane, iso -butane, neo -pentane and ammonia. Correlation of these with previous results leads to the conclusion that: ( а ) For molecules with a distribution of fundamental frequencies, such that there is only a small gap between the lowest and the remaining frequencies, vibrational activation enters via the lowest mode and spreads rapidly to the other modes, giving rise to a single relaxation process involving the whole of the vibrational energy. The chief factors determining the probability of excitation of the lowest mode are its frequency and the presence or absence of hydrogen atoms in the molecule. Molecules containing two or more hydrogen atoms suffer translational-vibrational energy transfer very much more easily than other molecules. Deuterium has almost the same effect as hydrogen. ( b ) For molecules, in which there is a large gap between the lowest and the remaining fundamental frequencies, a double relaxation process occurs. The complex energy transfer probabilities involved do not fit the same quantitative functional relation with vibrational frequency as in ( a ) above. ( c ) Torsional oscillations due to hindered internal rotation behave similarly to other fundamental modes. For molecules in which there is a large gap between the torsional frequency and the other modes (e. g. ethane) a double relaxation process occurs as in ( b ). Where there is no such gap, vibrational energy enters all modes via the torsional mode as in ( a ).

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. A m m e R . & Legvold S. 1955

2. Proc. P hys;Soc. B,1957

3. A ngona F . C. 1953 J.Ghent. P hys. 23 1960.

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3