The excitation theory of arcs with evaporating cathodes

Author:

Abstract

Most metals when used as the cathode of an arc discharge cannot reach temperatures sufficiently high to emit electrons thermionically. However, the temperatures are high enough to produce considerable evaporation. Mercury and copper are examples. The older theories suggest that here the current at the cathode is carried by electrons extracted by field emission, photo-electric emission or secondary emission by positive ions, or that the entire current is carried by positive ions produced by thermal ionization in the gas. All the theories are shown to be quantitatively inconsistent with observations. A new theory is suggested: electrons are released from the cathode by the impact of excited atoms. The electrons gain energy in the cathode fall and produce excited atoms in the dense vapour. The radiation from the excited atoms diffuses, mainly in the direction of the cathode, by successive absorption and re-emission in the vapour and is ultimately absorbed by atoms which strike the cathode. Positive ions are formed in the vapour by collisions between excited atoms, and by electrons colliding with excited atoms. The positive ions have three functions; their space charge provides the cathode fall in potential, they supply energy for evaporation and they transfer momentum to the evaporated atoms. The majority of the latter are back-scattered and in this way a vapour density is set up close to the cathode which is many orders of magnitude larger than elsewhere. An exceptionally high density, however, is a necessary condition for a low cathode fall and a high current density. The new picture is also consistent with the observed force on the cathode and the evaporation rate. The energy balance also supports the theory.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference58 articles.

1. A yrton H . 1910 The electric arc. L o n d o n : The E lectrician Publishing Co.

2. von Bertele H . 1953 Brit. J . A p p l. P hys. 4 91.

3. Bram hill F. H . 1932

4. P hys;Child C. D.;Rev.,1911

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spot Plasma and Plasma Jet;Plasma and Spot Phenomena in Electrical Arcs;2020

2. Gasdynamic Theory of Cathode Spot. Mathematically Closed Formulation;Plasma and Spot Phenomena in Electrical Arcs;2020

3. Cathode Spot Theories. History and Evolution of the Mechanisms;Plasma and Spot Phenomena in Electrical Arcs;2020

4. Vacuum Arc Cathode Spot Theory: History and Evolution of the Mechanisms;IEEE Transactions on Plasma Science;2019-08

5. On the propulsive force developed by asymmetric capacitors in a vacuum;Physics Procedia;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3