A nuclear magnetic resonance investigation of n -pentane, n -hexane and cyclo pentane

Author:

Abstract

The nuclear magnetic resonance spectra and spin-lattice relaxation times have been measured for the protons in n -pentane (C 5 H 12 ), n -hexane (C 6 H 14 ) and cyclo pentane (C 5 H 10 ) all in the solid state. The temperature range covered was from 70° K to the melting-points of 143·4° K for n -pentane, 177·8° K for n -hexane and 179·4° K for cyclo pentane. In the case of n -pentane and n -hexane the second moments of the absorption lines were found to be smaller than the computed rigid lattice values over the. whole temperature range. Possible molecular motions which might cause this reduction are discussed. It is suggested that the most probable type of motion is reorientation of the methyl groups at the ends of each molecule about the adjacent C—C bonds. An analysis of the spin-lattice relaxation times shows that this reorientation process is governed by an activation energy of 2·7 kcal/mole for n -pentane and 2·9 kcal/mole for n -hexane, values which support the mechanism postulated. At the lowest temperature the absorption lines had not reached their full widths, even though the reorientation frequencies at these temperatures were considerably less than the line-widths. The experimental second moment for cyclo pentane below about 120° K indicates that the lattice is effectively rigid in this temperature region. The uncertainties in both the experimental and theoretical second moments do not allow a distinction to be drawn between the plane and puckered molecular models. At the temperature of the first transition (122·4° K) the line-width second moment and relaxation time all show a sudden decrease. The low value of second moment at the higher temperatures indicates that considerable molecular motion is occurring, the molecules rotating with spherical symmetry. The change in crystal structure at the temperature of the second transition (138·1° K) is thought to be a direct result of this spherical symmetry. As the temperature increases, the results indicate that more molecular motion must be occurring, and it is thought that the rotating molecules are diffusing through the lattice.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3