A Discussion on the physics of the solar atmosphere - The interpretation of hard and soft x-rays from solar flares

Author:

Abstract

The present status of observations of hard X-ray bursts is reviewed in terms of the light they shed on alternative source models and on general characteristics of electron acceleration in flares. Special attention is given to the requirements of total energy release, and the time scale of its release, into energetic electrons on the basis of the normal bremsstrahlung interpretation of bursts. It is particularly emphasized that, since these electrons may dominate the energy balance in many flares, they provide on the one hand an attractive heating mechanism for the thermal flare but, on the other, put severe demands on acceleration mechanisms. A reassessment of the relative merits of synchrotron and inverse Compton source mechanisms is suggested, along with other possibilities, as an escape from this apparent difficulty. Observational characteristics of soft X-ray flares are cursorily reviewed. The importance of a non-isothermal approach to the physics of the soft X-ray plasma is then illustrated in terms of flare energy flow. It is argued however, that high spectral resolution is not the key to this problem since ill conditioning of the problem prevents useful inference of temperature structure. Instead high resolution imaging with moderate spectral resolution is advocated.

Publisher

The Royal Society

Subject

General Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photospheric Response to a Flare;The Astrophysical Journal;2018-09-12

2. Rethinking the solar flare paradigm;Plasma Science and Technology;2018-05-23

3. Current-driven flare and CME models;Journal of Geophysical Research: Space Physics;2017-08

4. Is Cyclotron Maser Emission in Solar Flares Driven by a Horseshoe Distribution?;Solar Physics;2016-11-02

5. Thermal and non-thermal emission from reconnecting twisted coronal loops;Astronomy & Astrophysics;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3