Dynamics of extended bodies in general relativity III. Equations of motion

Author:

Abstract

A study is made of the motion of an extended body in arbitrary gravitational and electromagnetic fields. In a previous paper it was shown how to construct a set of reduced multipole moments of the charge-current vector for such a body. This is now extended to a corresponding treatment of the energy-momentum tensor. It is shown that, taken together, these two sets of moments have the following three properties. First, they provide a full description of the body, in that they determine completely the energy-momentum tensor and charge-current vector from which they are constructed. Secondly, they include the total charge, total momentum vector and total angular momentum (spin) tensor of the body. Thirdly, the only restrictions on the moments, apart from certain symmetry and orthogonality conditions, are the equations of motion for the total momentum and spin, and the conservation of total charge. The time dependence of the higher moments is arbitrary, since the process of reduction used to construct the moments has eliminated those contributions to these moments whose behaviour is determinate. The uniqueness of the chosen set of moments is investigated, leading to the discovery of a set of properties which is sufficient to characterize them uniquely. The equations of motion are first obtained in an exact form. Under certain conditions, the contributions from the moments of sufficiently high order are seen to be negligible. It is then convenient to make the multipole , in which these high order terms are omitted. When this is done, further simplifications can be made to the equations of motion. It is shown that they take an especially simple form if use is made of the extension operator of Veblen & Thomas. This is closely related to repeated covariant differentiation, but is more useful than that for present purposes. By its use, an explicit form is given for the equations of motion to any desired multipole order. It is shown that they agree with the corresponding Newtonian equations in the appropriate limit.

Publisher

The Royal Society

Subject

General Engineering

Reference23 articles.

1. Bishop R. L. & Goldberg S. I. 1968 Tensor analysis on manifolds. New York: Macmillan.

2. DeWitt B. S. & Brehtne R. W. i960

3. Nuovo Cim..34, 317- 339;Dixon W. G.;Ann.Phys. (N.Y.),1964

4. Dixon W. G. 1967

5. Dixon W. G. 1970a

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3