A precision determination of the Lamb shift in hydrogen

Author:

Abstract

For over 40 years, optical and microwave spectroscopists, and atomic, nuclear and elementary particle physicists have been engaged in measuring the 2 2 S ½ -2 2 P ½ energy level separation in atomic hydrogen (the Lamb shift) and attempting to predict the splitting theoretically. The discrepancies encountered have influenced the development of theoretical methods of calculation in the areas of atomic structure, quantum electrodynamics and elementary particle physics. In this paper we present the results of a precision microwave determination of the Lamb shift, using a fast atomic beam and a single microwave interaction region. The value obtained is in substantial agreement with the earlier determinations and with the recent calculation by Mohr but is in disagreement with the earlier calculation by Erickson. This disagreement is further accentuated if recent modifications to the size of the proton are included, whereas the agreement with Mohr’s calculation is not affected. The experimental method uses a 21 keV beam of metastable 2 s hydrogen atoms which are obtained by charge exchange of a proton beam extracted from a radio frequency (r.f.) ion source. The experiment is performed in essentially zero magnetic field and uses a precision transmission line interaction region to induce r.f. transitions at the Lamb shift frequency. The result for the 2 2 S ½ F = 0 to 2 2 P ½ F = 1 interval in zero field is 909.904 ± 0.020 MHz corresponding to a Lamb shift of 1057.862 ± 0.020 MHz. The paper discusses the method and the host of corrections for systematic effects which need to be applied to the line centre, many of which have not been sufficiently understood or controlled in previous experiments. The paper is introduced with a brief survey of significant landmarks in calculation and measurement of the Lamb shift and concludes with a comparison of the present theoretical and experimental positions.

Publisher

The Royal Society

Subject

General Engineering

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new method that automatically regularizes scattering amplitudes;Journal of Physics Communications;2023-11-01

2. Tests of Fundamental Physics;Springer Handbook of Atomic, Molecular, and Optical Physics;2023

3. Precision Measurement of the Lamb Shift in Muonium;Physical Review Letters;2022-01-06

4. CODATA Recommended Values of the Fundamental Physical Constants: 2018;Journal of Physical and Chemical Reference Data;2021-09-01

5. CODATA recommended values of the fundamental physical constants: 2018;Reviews of Modern Physics;2021-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3