Mount Etna and the 1971 eruption - Lengths of lava flows

Author:

Abstract

The principal factor influencing the length of a lava flow is the rate of effusion. With a high rate the lava flows rapidly from the source and tends to form an extensive and far-reaching flow which is simple in character (i.e. made of a single flow unit). With a low rate the lava tends to pile up layer upon layer to form a local accumulation of limited lateral extent near the source, and this accumulation is strongly compound in character (i.e. divisible into flow units). The initial viscosity affects the length indirectly by controlling the thickness of the extrusion, and this thickness control is capable of accounting for the fact that the median length of low-viscosity basaltic extrusions is 3.2 times that of high-viscosity andesite, trachyte and rhyolite ones. Other factors, such as the local topography, are thought to be relatively unimportant, an exception being when lava is ponded in a topographic depression. Measurement of the rate of effusion may be critical in any attempt to predict the distance that a lava flow will travel, such as the one which threatened Fornazzo and other towns and villages on Etna in 1971.

Publisher

The Royal Society

Subject

General Engineering

Cited by 452 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lava squeeze-ups and volcanic resurfacing: a review;Journal of Volcanology and Geothermal Research;2024-07

2. The impacts of lulls and peaks in effusion rate on lava flow propagation;Journal of Volcanology and Geothermal Research;2024-07

3. Geological history of the Atira Mons large shield volcano, Beta Regio, Venus.;Planetary and Space Science;2024-05

4. Lava flow impacts on the built environment: insights from a new global dataset;Journal of Applied Volcanology;2024-02-15

5. A far-traveled basalt lava flow in north-central Oregon, USA;Geological Society of America Bulletin;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3