Abstract
A line vortex which has uniform vorticity 2Ω
0
in its core is subjected to a small two-dimensional disturbance whose dependence on polar angle is e
imθ
. The stability is examined according to the equations of compressible, inviscid flow in a homentropic medium. The boundary condition at infinity is that of outgoing acoustic waves, and it is found that this capacity to radiate leads to a slow instability by comparison with the corresponding incompressible vortex which is stable. Numerical eigenvalues are computed as functions of the mode number
m
and the Mach number
M
based on the circumferential speed of the vortex. These are compared with an asymptotic analysis for the m = 2 mode at low Mach number in which it is found that the growth rate is (π/ 32)
M
4
Ω
0
in good agreement with the numerical results.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献