Turbulence and mixing in a Scottish Loch

Author:

Abstract

It is nearly three-quarters of a century since E. R. Watson (1904) and E. M. Wedderburn (1907) made the observations in Loch Ness which showed conclusively, and for the first time, that large bodies of water contain beneath their surface the wave motions which have now come to be known as internal waves. The observations and theory of these waves have developed much since those days, but the Loch is still very useful as a site in which to observe and examine phenomena which are also found in other bodies of water, particularly the ocean. In particular the Loch provides a large-scale natural ‘laboratory’ in which a variety of small-scale phenomena associated with turbulence in a stratified fluid may be studied. Observations have been made with a novel profiling instrument which measures the horizontal velocity of the water and its temperature, from which the density may be inferred. These observations serve to illustrate a variety of local conditions which occur in calm weather, as the Loch responds to the wind and during the passage of an internal surge. Analysis of the records is conducted in terms of an intermittency index (the fraction of fluid in which the density decreases with depth), the Richardson number and a length scale which characterizes the vertical scale of the regions which are found to be unstably stratified. Semi-empirical formulae for the eddy diffusion coefficient and the rate of dissipation of kinetic energy in the turbulent motion are examined to see whether they are consistent with observations. No universal value of the Richardson number is found, but this may be a consequence of the rather low values of Reynolds number found in the Loch thermocline.

Publisher

The Royal Society

Subject

General Engineering

Reference49 articles.

1. Abram ow itz M . & Stegun L A. 1965 Handbook o f mathematicalfunctions. N ew York: Dover.

2. Observations o f oceanic internal waves from the Earth Resources T echnology Satellite. J.geophys;Byrne M .;Res.,1975

3. T he conditions for dynam ical similarity o f m otions o f a frictionless perfect-gas atmosphere. Qu.Jl R. met;Batchelor G. K .;Soc.,1953

4. Chandrasekhar S. 1961 Hydrodynamic and hydromagnetic stability. Oxford U niversity Press.

5. Crofts I. 1975 Microstructure o f density and velocity in the thermocline (observations in Loch N ess). Ph.D. dissertation. U niv. C ollege o f N . W ales Bangor.

Cited by 754 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3