The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications

Author:

Abstract

Many Alpine ophiolite complexes characteristically display a pseudostratiform sequence of ultramafics, gabbro, diabase, pillow lava and deep-sea sediments. These masses resemble the known rock suite from the ocean floor. They are either fragments of old oceanic crust and mantle caught up in deformed belts, or results of diapiric emplacement of partly molten mantle material on or near the sea bottom. Such complexes are widespread in the Tethyan mountain system and have been recognized also from the circumPacific region. The Troodos Massif, Cyprus, consists of a pseudostratiform mass of harzburgite, dunite, pyroxenite, gabbro, quartz diorite, diabase and pillow lava arranged in a dome-like manner. The diabase forms a remarkable dyke swarm, trending mostly north-south in which 100 km of extension is indicated over 100 km of exposure. Such a feature suggests formation by sea-floor spreading. Layering of pyroxenite, harzburgite and dunite generally is perpendicular to subhorizontal rock unit contacts. The harzburgite and dunite are tectonites and probably represent uppermost mantle. Pyroxenite, gabbro, quartz diorite and diabase may represent the products of partial fusion of mantle material or of fractional crystallization of such partial fusion products. Chemical compositions of mafic intrusive and extrusive rocks do not fit well with oceanic tholeiite compositions, but resemble greenstones and associated rocks recently reported from the oceans. The massif probably formed about an old Tethyan ridge. Some pillow lavas may be crust added after the main spreading episode. A fault zone active during emplacement of the lower units of the complex may represent a fossil transform fault. Complex chilled margins in the dyke swarms and mutually contradictory cross-cutting relations between dykes and plutonic mafic rock suggest formation of ocean crust by multiple intrusion of small portions of liquid. Uneven top surface of the dyke swarm and some conjugate dyke systems suggest independently varying rates of magma supply and extension. Other Tethyan ophiolites, particularly in Greece and Italy, exhibit internal structure parallel to, rather than perpendicular to, major rock units, and some show much less diversity in mafic rock type. If these masses are fragments of ocean floor and mantle, such differences in internal structure may be due to differences in spreading processes—perhaps differences in spreading rate.

Publisher

The Royal Society

Subject

General Engineering

Reference61 articles.

1. (Moores & Vine)

2. Aubouin J. 1965 Geosynclines.New York: Elsevier.

3. Aumento F. 1968 Can. J . Earth Sci.

4. Diorites from the Mid-Atlantic Ridge at 45°N

Cited by 686 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3