Extraterrestrial Mineralogy: Two major igneous events in the evolution of the Moon

Author:

Abstract

An understanding of the origin of the Moon is strongly dependent upon a knowledge of its bulk composition and thermal history. Both aspects require a detailed consideration of the composition and origin of the lunar crust and of the mantle-derived lunar basalts. The evidence for two major igneous events is discussed, the first being a large-scale melting and fractionation into crust and mantle at —4.6 to —4.5 Ga, and the second a partial melting of the uppermost mantle at —3.8 to — 3.2 Ga. The distribution of uranium is used to place constraints on the minimum extent of initial melting and on the depth at which the mare basalts were generated, using recent lunar heatflow data for a bulk-Moon uranium content of 30 parts/10 9 . The model favours melting of at least 90 % by volume, and a concentration of the high U-contents of the crust and upper mantle by formation of a thick lower mantle of mafic adcumulates ‘barren’ in heat-producing elements. The ‘fertile’ mafic orthocumulates from which the mare basalts were generated are restricted by the model to depths of less than 200 km. A downward revision of the bulk U-content of the Moon results in down-scaling of the other refractory lithophile elements by analogy with the solar-nebula condensation models. This means that the bulk Moon is fairly close in composition to that of the Earth’s mantle, including its iron content but excluding the volatile elements which are strongly depleted in the Moon. Low contents of siderophile and chalcophile elements, and high contents of lithophile refractory elements in the lunar basalts are attributable to the large-scale fractionation into a core, mantle and crust. The hypothesis of an origin for the Moon by fission from a proto-Earth is revived. Earth layering by a heterogeneous accretion sequence would account for non-equilibrium between core and mantle (e.g. nickel distribution) and an outer veneer of volatile-rich condensate that would contribute to subsequent generation of a granitic crust. Early collision with a large body may have caused fission and formation of a proto-Moon from the Earth’s iron-poor, proto-mantle, with loss of volatiles. Early melting of most of the proto-Moon led to strong fractionation such that the crust and mantle-derived basalts appear to have more extreme compositions, relative to Earth basalts, than is indicated by the likely bulk composition of the Moon.

Publisher

The Royal Society

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Igneous Petrology;1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3