Spatial modelling of type II diabetes outcomes: a systematic review of approaches used

Author:

Baker Jannah12ORCID,White Nicole12,Mengersen Kerrie12

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia

2. Cooperative Research Centres for Spatial Information, Melbourne, Victoria, Australia

Abstract

With the rising incidence of type II diabetes mellitus (DM II) worldwide, methods to identify high-risk geographical areas have become increasingly important. In this comprehensive review following Cochrane Collaboration guidelines, we outline spatial methods, outcomes and covariates used in all spatial studies involving outcomes of DM II. A total of 1894 potentially relevant citations were identified. Studies were included if spatial methods were used to explore outcomes of DM II or type I and 2 diabetes combined. Descriptive tables were used to summarize information from included studies. Ten spatial studies conducted in the USA, UK and Europe met selection criteria. Three studies used Bayesian generalized linear mixed modelling (GLMM), three used classic generalized linear modelling, one used classic GLMM, two used geographic information systems mapping tools and one compared case:provider ratios across regions. Spatial studies have been effective in identifying high-risk areas and spatial factors associated with DM II outcomes in the USA, UK and Europe, and would be useful in other parts of the world for allocation of additional services to detect and manage DM II early.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference67 articles.

1. International Diabetes Federation. 2014 IDF diabetes atlas: sixth edition. See https://www.idf.org/diabetesatlas/update-2014.

2. Uninsured Patients in District of Columbia Hospitals

3. Diabetes UK. 2012 State of the Nation 2012 England. Diabetes. See http://www.diabetes.org.uk/Documents/Reports/State-of-the-Nation-2012.pdf.

4. Is Neighborhood Green Space Associated With a Lower Risk of Type 2 Diabetes? Evidence From 267,072 Australians

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3