Abstract
The plane strain problem of a curved elastic body pressed against an elastic half-space is considered. The effect of adhesion is included through the use of surface energy in a manner similar to the well-known JKR theory for spherical contacts. The compressive normal force is held constant while a tangential force is gradually increased from zero. The contact is characterized by complete stick up to a critical value of the tangential force when there is a transition either directly to complete sliding or to a partial slip state in which a central stick region is surrounded by two slip regions. In the latter case, at a finite value of the stick zone width, a second critical condition exists at which there is a transition from partial slip to complete sliding. This behaviour is determined for a range of dimensionless values of the work of adhesion, the assumed constant shear stress during slip/sliding and the initial compressive load.
Reference20 articles.
1. Contact Mechanics
2. Sul Contatto di due corpi elastici;Cattaneo C;Rendiconti dell’Accadamia Nationale Dei Lincei,1938
3. Compliance of elastic bodies in contact;Mindlin RD;J. Appl. Mech.,1949
4. Effect of contact deformations on the adhesion of particles
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献