Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics

Author:

Akanni Wasiu A.12,Wilkinson Mark2,Creevey Christopher J.3,Foster Peter G.2,Pisani Davide4

Affiliation:

1. Department of Biology, The National University of Ireland, Maynooth, Co. Kildare, Republic of Ireland

2. Department of Life Science, The Natural History Museum, London SW7 5BD, UK

3. Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion SY23 3FG, UK

4. School of Biological Sciences and School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TG, UK

Abstract

Since their advent, supertrees have been increasingly used in large-scale evolutionary studies requiring a phylogenetic framework and substantial efforts have been devoted to developing a wide variety of supertree methods (SMs). Recent advances in supertree theory have allowed the implementation of maximum likelihood (ML) and Bayesian SMs, based on using an exponential distribution to model incongruence between input trees and the supertree. Such approaches are expected to have advantages over commonly used non-parametric SMs, e.g. matrix representation with parsimony (MRP). We investigated new implementations of ML and Bayesian SMs and compared these with some currently available alternative approaches. Comparisons include hypothetical examples previously used to investigate biases of SMs with respect to input tree shape and size, and empirical studies based either on trees harvested from the literature or on trees inferred from phylogenomic scale data. Our results provide no evidence of size or shape biases and demonstrate that the Bayesian method is a viable alternative to MRP and other non-parametric methods. Computation of input tree likelihoods allows the adoption of standard tests of tree topologies (e.g. the approximately unbiased test). The Bayesian approach is particularly useful in providing support values for supertree clades in the form of posterior probabilities.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3