QUENCHING BEHAVIOR OF THE SOLUTION FOR THE PROBLEMS WITH SEQUENTIAL CONCENTRATED SOURCES

Author:

Liu H T,

Abstract

This article studies the diffusion problems with a concentrated source which is provided at a sequential time steps in 1 dimensional space. The problems are considered for both Gaussian and fractional diffusion operators. For the fractional diffusion case, Riemann-Liouville operator with fractional order is used to describe the model with diffusion rate slower than normal time scale, which is known as sub diffusive problems. Due to this sub diffusive property, the existence and nonexistence behavior of the solution will be studied. Since the forcing term will experience a concentrated source at a sequence of time steps, the frequency, the time difference and strength of the source may affect the growth rate of the solution. Criteria for these effects which may cause for the quenching behavior of the solution will be given. The existence of the solution is investigated. The monotone behavior in spatial will be given. The quenching behavior of the solution will be studied. The location of the quenching point will be discussed.

Publisher

Global Research & Development Services

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3