OPTIMIZATION OF SURFACE ROUGHNESS AND CONE ANGLE IN AWJ MACHINING OF AIRCRAFT MATERIAL USING RSM

Author:

Deshpande Yogesh V., ,Barve P. S.,Madankar T. A.,Pund S. S., , ,

Abstract

Abrasive water jet machining (AWJM) of aircraft material is a difficult process using conventional machines. Machined parts of Inconel 718, a nickel-based alloy (aircraft material) are widely used in the aerospace industries. However, these alloys are expensive and difficult to machine. The objective of this article is to optimize AWJM process parameters. Response Surface Methodology (RSM) is planned with travel speed, abrasive flow rate, and stand-off distance as inputs. The response models of surface finish and cone angle show the correlation coefficient `R2` of 96.94% and 96.67%, respectively. 3D surface plot with analysis of variance (ANOVA) is presented to distinguish significant AWJM parameters. The work revealed that travel speed is a significant factor for surface finish and cone angle. Multi-response optimization results in the best optimal values of traverse speed; abrasive flow rate and standoff distance are 200 mm/min, 460 g/min, and 4 mm respectively. This research outcome showed more than 90 % of accuracy for both the responses. This article is helpful to the AWJM centers to select optimal machining parameters for achieving the desirability in the machining of Inconel 718. The obtained novel results confirmed that such a technique can be implemented to identify optimal parameters in the machining of different materials.

Publisher

Global Research & Development Services

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OPTIMIZATION OF CUT QUALITY FOR AWJ PROCESSING OF A STEEL ALLOY;International Journal of Modern Manufacturing Technologies;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3