Preparation of Polylactic Acid/Glycolic Acid Copolymer Nanoparticles and Its Effect in the Treatment of Diabetes

Author:

Liu Wentian1,He Yumei2,Wei Li3,Zhang Jin4,Wu Feng3

Affiliation:

1. Internal Medicine of Integrated Traditional Chinese and Western Medicine, Hanzhong Central Hospital, Hanzhong, 723000, Shaanxi, China

2. General Practice, Affiliated Hospital of Yan’an University, Yan’an, 721000, Shaanxi, China

3. Department of Endocrinology, Baoji People’s Hospital, Baoji, 716000, Shaanxi, China

4. Medical Department, Baoji People’s Hospital, Baoji, 716000, Shaanxi, China

Abstract

Insulin (INS) is easily degraded when administered orally and loading it into polylactic acid/glycolic acid (PLGA) polymer nanoparticles can enhance the efficacy of the drug. The W/O/W double emulsion solvent volatilization method was adopted to prepare INS-loaded PLGA nanoparticles. The preparation formula of nanoparticles was determined according to the type, concentration, and PLGA concentration of the emulsifier. Then, the morphology, particle size, and drug encapsulation efficiency of nanoparticles were characterized. Phosphate buffered solution (PBS) with pH = 7.4 was utilized as the release medium, and the prepared nanoparticles were analyzed for in vitro release performance. In addition, the rat diabetes model was constructed, and subcutaneous injection of nanoparticle in vitro release solution was performed to observe its hypoglycemic effect, which was used for the treatment of diabetic patients. Patients were rolled into experimental group and control group. The changes of the patients’ HbA1c, blood lipids (total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), C peptide, and aminopeptidase N (APN) were observed before and after treatment. Through the test, the appearance of the prepared nanoparticles was round, the average particle size was 416.7 nm, and the INS encapsulation efficiency was (36.82±2.26)%. After 36 h, the cumulative release of INS reached (60.58 ±1.45)%, and then the release rate gradually slowed down. The drug release tended to be balanced after 72 h, and the best hypoglycemic effect was achieved after subcutaneous administration 3 h (P < 0.01). The blood glucose level of the rat diabetes model was greatly decreased after 3 h injection of 36.8 IU/kg PLGA polymer nanoparticles (P < 0.05), and the blood glucose dropped to the lowest at 8 h (P < 0.01), which was only (38.8 ± 3.72)% of the initial blood glucose. HbA1C of diabetic patients increased remarkably after treatment (P < 0.05), TG, TC, and LDL-C in blood lipids decreased, and HDL-C increased, without statistically considerable differences (P > 0.05). The serum APN level increased greatly (P < 0.01). In short, the prepared PLGA polymer nanoparticles can effectively reduce blood glucose, help diabetic patients to relieve the toxicity of high glucose in the body, and improve the secretion function of INS.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3