Affiliation:
1. Department of Ultrasound, Weifang People’s Hospital, Weifang, 261100, Shandong, China
2. Department of Neurology, Weifang People’s Hospital, Weifang, 261100, Shandong, China
Abstract
This study aimed to explore the value of preoperative mammography in the differential diagnosis of benign and malignant tumors of nipple discharge. A biocompatible T1 contrast agent KMnF3 nanoparticle was first developed in the research, and then RGD-coupled KMnF3
nanoparticles were further synthesized as a highly sensitive tumor-targeted magnetic resonance imaging (MRI) contrast agent. While the nanoparticle was characterized physically, cytotoxicity test and MRI test in breast cancer mice were performed, and the excised tumors were subjected to immunostaining
and tumor electron microscope section processing. At the same time, 60 patients with nipple discharge were screened to participate in the research, and the prepared MRI nano contrast agent was used for the differential diagnosis of breast benign/malignant tumors of nipple discharge. In the
experiment, the synthetic nanoparticles were tested by Fourier transformed infrared (FTIR), which proved that the designed RGDtu/KMnF3 nanoparticles were successfully synthesized. The quantitative analysis of the synthesized nanoparticles showed that the relaxation efficiency reached
23.12 mM−1s−1, and there was no obvious toxicity. After staining, the microscope showed that the tumor was proliferating. After intravenous injection of low-dose RGDtu/KMnF3 contrast agent, nanoparticles were found in the tumor tissue. It was found
that the synthesized nanoparticles enhanced the contrast of tumors with a volume of less than 50 mm3 by observing tumor slices. The imaging of the patient’s breast showed that the X-ray classification of galactography based on this contrast agent was statistically significant
in distinguishing benign/malignant lesions of nipple discharge (X2 = 58.700, P < 0.01).
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献