Physical and Mechanical Characterization of Poly(methyl methacrylate) Based Cements for Bone Regeneration

Author:

Sheikh Abeer1,Mirza Eraj Humayun2,Baig Saif ur Rehman1,Fareedi Fatima1,Khan Umar1,Aftab Usama1,Irfan Umar bin1,Khan Aftab Ahmed3,Haleem Berrah Abdul2,Khan Muhammad Muzammil1,Omair Syed Muhammad1,Al-Khureif Abdulaziz Abdullah1

Affiliation:

1. Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi, 75300, Pakistan

2. Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan

3. Dental Biomaterials Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, KSA

Abstract

This laboratory study set out to characterize Calcium Phosphate (CaP) based bone cements with added Zinc Oxide (ZnO) embedded in Poly (methyl methacrylate) (PMMA). Bone cements with varying percentages of CaP mixed with and without varying percentages of ZnO in PMMA were fabricated by one-step polymerization by reacting equimolar ratios of MMA powder and acrylic resin. Neat-PMMA was used as control throughout the experiment. Fabricated samples were tested for their contact angle measurement, surface roughness, nanohardness, elastic modulus, and also their chemical characterization using Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. A one-way analysis of variance (ANOVA) was used as a statistical method, and a p-value of less than 0.05 was considered statistically significant. It was found that increasing CaP content elevated the hydrophobicity of the composites while mechanical properties increased with the increase of CaP. On the contrary, the addition of ZnO did not show any significant effect. The optimal concentration was observed to be at 20% CaP loading where the mechanical properties were balanced with the hydrophilic nature of CaP. It was also noted that different wt.% of ZnO and CaP did not affect the physicochemical characteristics of the composites. The PMMA-CaP composites demonstrated encouraging results and necessitate further studies to ascertain the implementation of these bone cements clinically.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3