Effects of Liposomal Nanoparticles-Mediated miR-126 on Cervical Cancer Cells via Anti-Programmed Cell Death-1/Programmed Death Ligand 1 (PD-1/PD-L1) Signaling

Author:

Xu Minjuan1,Huang Jun1,Wang Liefeng2

Affiliation:

1. Department of Obstetrics and Gynecology, Ganzhou People’s Hospital, Ganzhou 341000, Jiangxi, China

2. Department of Biotechnology, Gannan Medical University, Ganzhou 341000, Jiangxi, China

Abstract

Cervical cancer is often treated with surgery, radiotherapy and chemotherapy, but it does not have the advantages of precise treatment and prognosis is not ideal. Molecular targeted therapy can make up for the above shortcomings. This study mainly analyzed the influence of miR-126 on cervical cancer cells and possible molecular mechanisms, so as to provide a reference for better clinical improvement of prognosis for cervical cancer. C33a cells were assigned into control group, empty carrier group (C33a cells were co-cultured with liposome nanoparticle carrier), inhibitor group (C33a cells were treated with PD-1/PD-L1 signaling pathway inhibitor), miR-126 group (miR-126 with liposomal nanoparticles as carrier was added to C33a cells), followed by expression analysis of miR-126 and AK2, cell proliferation, PD-1/PD-L1 signaling and phosphorylation levels, as well as tumor mass and volume in nude mice. At 24 h, no difference of cell proliferation was found (P > 0.05) but cell proliferation showed significant differences after cell growth of 48 h, with lower proliferation in inhibitor group and miR-126 group (P < 0.05). The levels of PD-1, PD-L1, AK2, and p-PD-1 in inhibitor group and miR-126 group were significantly lower than for the other two groups (P > 0.05). There was a target relationship between miR-126 and AK2. The transplanted tumor in the miR-126 group was significantly decreased, with lower tumor mass and volume than control group (P < 0.05). The carrier-based miR-126 and PD-1/PD-L1 signaling inhibitors can inhibit cervical cancer cell proliferation.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3