Astragaloside Attenuates Atherosclerosis Coupled Inflammation Through miR-101/Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1)/p38 Signaling in Mice

Author:

Chen Zhidong1,Tang Kankai1,Xu Wei1,Liu Fengqi1,Zhu Bingnan1,Shao Xueping1

Affiliation:

1. Critical Care Medicine of First Affiliated Hospital, Huzhou Teachers College, The First People’s Hospital of Huzhou, Huzhou 313000, Zhejiang, China

Abstract

This study aimed at elucidating the effect of astragaloside on atherosclerosis coupled inflammation and potential mechanism in mice. C57BL/6J mice were maintained in high-fat diet (HFD) for 12 weeks to induce atherosclerosis, with or without treatment with astragaloside (50 mg/kg). In turn, serum biochemical parameters in mice were also evaluated. Multiple tissue stain assay, including HE, were employed to assess the pathological alterations in arteries, and blood inflammation mediators were examined using ELISA. Expressions of microRNA101 (miR-101), p-p38 and mitogen-activated protein kinase phosphatase-1 (MKP-1) in the arteries were evaluated by qPCR and Western blot. Finally, AML-193 cells were transfected by miR-101 mimics and inhibitors. Expression of miR-101, MKP-1 and downstream inflammation cytokines were then analyzed. High-fat diet (HFD) mice with astragaloside treatment exhibited reduced atherosclerotic plaques size evaluated by oil red o, improved hepatocyte steatosis, and increased collagen fibers in atherosclerotic plaques for more stable plaque. Further, astragaloside treatment suppressed miR-101 transcription and enhanced MKP-1 expression, thus restraining the secretion of inflammation factors in vitro. Moreover, the inhibited impact of astragaloside in inflammatory factors production was ineffective in the presence of miR-101 mimics in AML-193 cells stimulated by LPS. Astragaloside exerted an anti-inflammatory role through miR-101/MKP-1/p38 signaling, for reducing atherosclerotic plaques and alleviate inflammation damage in mice and AML-193 cell.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3