Preparation of Snake Neurotoxin Nanocapsules and the Analgesic Mechanism of P38 Mitogen-Activated Protein Kinase Signal Pathway Combining Snake Neurotoxin Nanocapsules with Gabapentin

Author:

Yin Fengting,Li Xiaokun,Zhang Weili

Abstract

This study aimed to explore the analgesic effect of snake neurotoxin combined with gabapentin (Gab) on neuropathic pain in rats with chronic compression injury (CCI) of the sciatic nerve based on the nanotechnology. Firstly, various solutions were prepared to obtain the inner water phase, the oil phase, the outer water phase, and the dilution phase. Poly(lactic-co-glycolic) Acid (PLGA) and polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) were added to the prepared oil phase solution to obtain the PLGA snake neurotoxin nanocapsule and PEG-PLGA snake neurotoxin nanocapsule, respectively. After the nanocapsules were obtained, a rat CCI model was further modelled, and the reactive oxygen species (ROS) content in the rat brain tissue was analyzed and tested by the kit, and the optimal physical conditions for preparing the nanocapsules were tested. In order to test the effect of nanocapsules on the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the rats were divided into Control group, Sham group, CCI group, Gabapentin (Gab) group, and PEG-PLGA snake neurotoxin nanocapsule + Gab group. The rats in different groups were given abdominal injections to compare relevant indicators of signal pathway. In the experiment, neuropathic pain was related to changes in ROS content, and snake neurotoxin nanocapsules could reduce the ROS content; PLGA snake neurotoxin nanocapsules and PEG-PLGA snake neurotoxin nanocapsules had encapsulation efficiencys of 24.7% and 22.8% and drug loading of 3.28% and 3.02%, respectively, and the particle sizes of prepared nanocapsules were 760 nm~1,150 nm. Besides, the phase transition temperature of about 50 °C and the light time of 1 h can accelerate the release of nanocapsules to the greatest extent; and the snake neurotoxin could inhibit the activation of p38 MAPK signaling pathway so as to play the analgesic effects on neuropathic pain.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3