Novel Difolate Targeting Nano-Level Ultrasound Contrast Agent for Therapy of Breast Cancer Tumor Cells

Author:

Liu Guangheng1,Yang Xiangfeng1,Niu Qiming1,Sun Wenkui1

Affiliation:

1. Department of Ultrasound, Weifang People’s Hospital, Weifang, 261041, Shandong, China

Abstract

ABSTRACTA new type of difolate targeting nano-level ultrasound contrast agent ((folate molecule, FOL)2-TUAs) was prepared, so as to investigate its targeted binding effect with human breast cancer mammary carcinoma cells (MCF-7) in vitro. L-2-aminoadipic acid (L-2-AD) as a branch unit was inserted at the hydroxyl end of distearoyl phosphatidylethanolamine (DISP)-PEG2000-COOH to construct a tree structure. At this time, the free hydroxyl group in the distearoyl phosphatidylethanolamine (DISP)-PEG2000-COOH structure modified the FOL with the help of N-Hydroxysuccinimide/N,N'-dicyclohexylcarbodiimide (NHS/DCC). Each 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DISP-PEG2000) connected two FOLs to generate difolate targeted nanomaterials. Nano laser particle size (PS) and Zeta potential analyzer (ZPA) were applied to analyze the physical characteristics of the material such as PS and dispersion, and the enhanced development effect in vitro was detected by the ultrasonic diagnostic instrument. Besides, the targeted binding ability of the contrast agent based on this material to folate receptor (FR) overexpressing MCF-7 cells was analyzed by flow cytometry (FCM) and fluorescence microscope. In the experiment, hydrogen-1 nuclear magnetic resonance (1H NMR) demonstrated that (FOL)2-TUAs was successfully synthesized. The surface of this material was round and uniformly distributed without aggregation. According to the relative number of FOL molecules, non-targeted nano-agent (U-TUA), monofolate targeted nano-agent (FOL-TUA), and difolate targeted nano-agent ((FOL)2-TUA) were obtained. The in vitro imaging showed that different materials exhibited enhanced imaging effects in ultrasonic diagnostic equipment. FCM and fluorescence microscopy both indicated that the difolate TUA could achieve a good binding to MCF-7 cells. Most of the nano-agents were attached to the cell membrane, surrounded by red fluorophore, namely increasing the FOL content of DISP-PEG2000 chain could enhance the targeted binding ability of tumor cells.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3