Natural Bioconvective Flow Through a Vertical Cylinder in Porous Media Drenched with a Nanofluid

Author:

Rashad A. M.1,Mansour M. A.2

Affiliation:

1. Department of Mathematics, Aswan University, Faculty of Science, Aswan, 81528, Egypt

2. Academy of Scientific Research and Technology (ASRT), Cairo, 11516, Egypt

Abstract

A mathematical model is concerned with the natural bioconvective flow over a radiative vertical cylinder embedded in a Darcy porous medium drenched with a nanofluid containing both nanoparticles and gyrotactic microorganisms. The model utilized for the nanofluid consolidates the impacts of Brownian motion and thermophoresis in the presence of passively controlled boundary conditions and the Rosseland approximation is applied to characterize the radiative heat flux in the energy equation. Appropriate transformations are used to reframe the PDEs of the modeled system into a nonsimilar form. The obtained data are authenticated with an outstanding agreement. In this regard, the engineering quantities of interest are calculated widely with a greater grade of accuracy and therefore abstracted tabularly. To explain the influence of the emerging important flow-field parameters on the curves of velocity, temperature, and microorganisms concentration, as well as the local Nusselt and motile microorganism numbers. Several elucidations are carried out successfully along with detailed illustrations. The presented theoretical investigation has a considerable role in engineering where nanofluids flow is applied to organize a bioconvection process for the development of power generation and mechanical energy. One of the more important features of bioconvection is the aggregation of nanoparticles with motile microorganisms requested to augment the stability, heat and mass transmission.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3