Magnetohydrodynamic Free Convection Through Entropy Generation Scrutiny of Eco-Friendly Nanoliquid in a Divided L-Shaped Heat Exchanger with Lattice Boltzmann Method Simulation

Author:

Ferhi M.1,Djebali R.2,Mebarek-Oudina F.3,Abu-Hamdeh Nidal H.4,Abboudi S.5

Affiliation:

1. Department of Industrial Engineering and Applied Physics, Higher National Engineering School of Tunis, University of Tunis, Tunis, 1008, Tunisia

2. Department of Computer Sciences, ISLAIB, University of Jendouba, Béja, 9000, Tunisia

3. Department of Computer Sciences, ISLAI Beja, University of Jendouba, Environment Boulevard, Beja 9000, Tunisia

4. Department of Mechanical Engineering, College of Engineering, King Abdulaziz University, Postal Code 21589, Jeddah, Saudi Arabia

5. Département Conception, Optimisation, Modélisation en Mécanique, UTBM (Interdisciplinary Laboratory Carnot Bourgogne-UMR 6303, CNRS), University of Bourgogne Franche Comté, 90010, Belfort, Franc

Abstract

The current paper aims to investigate numerically the magnetized conjugate heat transport in a divided L-shaped heat exchanger (HE) filled with eco-nanofluid (functionalized graphene nanoplatelet (GnPs) dispersed in water) utilizing Lattice Boltzmann technique. Experimental correlations for thermo physical proprieties of the green nanofluid are utilized to study the flow pattern and conjugate heat transport inside the divided L-shaped HE. The entropy generation is also analyzed. Results are mainly presented using streamline, isotherms, entropy generation, Bejan number and average Nusselt number for various terms such as Ra numbers, Ha numbers and temperature. The obtained findings show that the heat transport enhances via increasing Ra number. The augmentation of magnetic field strength reduces the heat transport and the generated entropy. This behavior becomes remarkable for Ra= 105. Moreover, The Bejan number is kept constant for Ra=103 for all Ha number and increasing the Ra, the Bejan number increases with Ha. Besides, the increase in temperature rises the heat transport rate and reduces the entropy generation; nevertheless, the Bejan number is kept constant for all temperature values.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3