Effects of Viscous Dissipation and Thermal Radiation on an Electrically Conducting Casson-Carreau Nanofluids Flow with Cattaneo-Christov Heat Flux Model

Author:

Veera Reddy K.1,Venkata Ramana Reddy G.2,Chamkha Ali J.3

Affiliation:

1. Research Scholar, Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, India

2. Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, India

3. Faculty of Engineering, Kuwait College of Science and Technology, Doha-35004, Kuwait

Abstract

The primary goal of this research is to study the Cattaneo-Christov heat flux model on the impacts of mass and energy transit of MHD Casson-Carreu nanofluid through a permeable vertical accelerating plate with Soret and Dufour mechanism. The non-Newtonian fluids flowed over the porous vertical plate to reach the boundary layer in this investigation. In order to understand the physical model, partial differential equations (PDEs) are used. To get a linked nonlinear set of ordinary differential equations (ODEs), we reduced this set of PDEs by using similarity variables. SHAM, a spectrum basis technique, was utilized to solve these modified equations to understand the physical significance. A good method is to utilize SHAM to decouple the coupled nonlinear ODE systems and divide them into linear and nonlinear equation sets since this helps to separate the systems. As a result, the two non-Newtonian fluids (Carreu and Cassin) flow together through the vertical wall and into the boundary layer, where different parameters’ impacts are scrutinized. The current results showed that an upturn in the Casson parameter (β) degenerates the boundary layer velocity and the total thickness. Upturn in the Weissenberg number (We) on the other hand, raises the velocities and temperatures in both directions. Additionally, increasing the Soret and Dufour parameters sped up the velocity graph.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3