Entropy Generation in Magneto-Casson Nanofluid Flow Along an Inclined Stretching Sheet Under Porous Medium with Activation Energy and Variable Heat Source/Sink

Author:

Nandi Susmay1,Das Manik1,Kumbhakar Bidyasagar1

Affiliation:

1. Department of Mathematics, National Institute of Technology Meghalaya, Shillong 793003, India

Abstract

The current paper deals with the study of magneto-convective and chemically reactive Casson nanofluid flow along an inclined permeable stretching surface embedded in a fluid-saturated uniform porous medium. As a novelty of the work, entropy generation analysis in the presence of multiple slips at the surface and a nonuniform heat source/sink is carried out. Moreover, viscous dissipation, Arrhenius activation energy, Joule dissipation and thermal radiation are included in the investigation. To the best of authors’ knowledge, no such study on Casson nanofluid is reported yet in the literature. Dimensionless similarity transformations have been introduced to convert the regulating model PDEs into ODEs in dimensionless form. As the model equations are highly nonlinear in nature, shooting technique based on the Runge-Kutta Cash-Karp method is used to solve those equations numerically. The updated values of the initial guesses are computed with the help of secant iteration. Profiles for fluid velocity, temperature, nanoparticle concentration and entropy generation have been drawn to explain the impacts of several important parameters on momentum, thermal and mass fields. However, the surface drag force, heat and mass transport rates at the solid wall are illustrated using numerical data displayed in tabular form. Also, a linear regression model is derived for the local Nusselt number and the related physical parameters. Moreover, a comparison table is presented to confirm the correctness of the obtained results. A fantastic correlation of the present results with the existing results is reported. Graphical results reveal that for the rising values of the angle of inclination parameter and magnetic parameter velocity profiles are declined, but for the growing values of Eckert number and thermal radiation parameter temperature profiles are enhanced.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3