Author:
Rajan Magesh T.,Hassan Rizbi,Hong Haiping
Abstract
Nanofluids with nanoscale colloidal suspensions having condensed nanomaterials have been found to show highly-enhanced physical, chemical, thermal and transport properties and signifies great potential in many fields. In this article, laser induced plasmas at liquid-metal phase boundaries
is investigated for copper oxide (Cu2O) nanoparticle synthesis in ethanol without any surfactants. The nanoparticles are generated using 1064 nm NdYAG laser ablation in a water confined plasma with 1.5 J laser energy pulsed at 10 Hz for 4 minutes, which resulted in narrow size distribution
of nanoparticles of size ranging from 2 to 12 nm dispersed in ethanol sans surfactant. The synthesized Cu2O nanoparticles in ethanol are characterized for their sizes, surface morphology, crystalline structures and elemental compositions etc. The dynamic light scattering (DLS) measurements
show Cu2O nanoparticles synthesized have an average size of 4.5 nm. The scanning electron microscope (SEM) measurements show Cu2O nanoparticles exhibit isolated and agglomerated nanoparticles with near-spherical and irregular surface morphologies. Transmission electron
microscopy (TEM) measurements show Cu2O nanoparticles with near-spherical and irregular shapes, and the average size of the nanoparticles is ˜4.5 nm. Selected area electron diffraction (SAED) measurements show poly crystalline structure present in the Cu2O nanoparticles.
The energy-dispersive X-ray spectroscopy (EDX) measurements show the purity of Cu2O nanoparticles with identification of significant Cu and O elements. X-ray diffraction (XRD) measurements confirm that the Cu2O nanoparticles are polycrystalline in nature and confirmed
the presence of single phase of Cu2O nanoparticles.
Publisher
American Scientific Publishers
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献