Nano-Tribological Analysis by Molecular Dynamics Simulation—A Review

Author:

Zhang L. C.,Mylvaganam K.

Abstract

The advent of super computers for large scale atomic simulations and the invention of proximal testing devices such as atomic force microscope, friction force microscope, surface force apparatus, nanoScratcher etc., have led to the development of micro- and nano-tribology. This paper reviews some fundamental concepts and steps involved in molecular dynamics modeling of nanotribology together with some significant aspects such as the mechanisms of wear and friction, the scale effect of asperity contact size on friction, and the deformation induced by two-body and three-body contact sliding on the atomic scale with a focus on the authors' work on copper and silicon. Studies on diamond-copper sliding reveal that there exist four distinct regimes of deformation, and that no-wear deformation can be achieved by using a lower sliding speed, a smaller tip radius and a better lubrication. The variation of the frictional force is a function of contact area in all regimes except that in the cutting regime where the conventional friction law still holds. Investigations into the diamond-silicon sliding show that the amorphous phase transformation is the main deformation in silicon. In a two-body contact sliding, the deformation of silicon falls into no-wear, adhering, ploughing, and cutting regimes while in a three-body sliding it falls into no-wear, condensing, adhering, ploughing and no-damage wear regimes.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3